CBSE Sample Question Paper Term 1 Class - XI (Session : 2021 - 22) ## **SUBJECT - PHYSICS 042 - TEST - 01** ## **Class 11 - Physics** ## Time Allowed: 1 hour and 30 minutes Maximum Marks: 35 #### **General Instructions:** - 1. The Question Paper contains three sections. - 2. Section A has 25 questions. Attempt any 20 questions. - 3. Section B has 24 questions. Attempt any20 questions. - 4. Section C has 6 questions. Attempt any 5 questions. - 5. All questions carry equal marks. - 6. There is no negative marking. #### Section A ## Attempt any 20 questions - 1. Newtonian mechanics could not explain [0.77]a) flight of rockets. b) fall of bodies on earth. c) some of the most basic features of d) movement of planets. atomic phenomena. 2. Light year is used to measure: [0.77]a) distance between atoms b) distance between stars c) stationary charge d) none of these. 3. A jet plane lands with a speed of 100 m/s and can accelerate at a maximum rate of -5.00 [0.77] m/s^2 as it comes to rest. From the instant the plane touches the runway, what is the minimum time in seconds before it can come to rest? a) 20.0 b) 10.0 c) 25.0 d) 30.0 A motorcycle stunt rider rides off the edge of a cliff. Just at the edge, his velocity is 4. [0.77] - 4. A motorcycle stunt rider rides off the edge of a cliff. Just at the edge, his velocity is horizontal, with a magnitude of 9.0 m/s. Find the magnitude of the motorcycle's velocity vector, 0.50 s after it leaves the edge of the cliff. - a) 11.3 m/s b) 8.98 m/s - c) 10.2 m/s d) 9.65 m/s - 5. If the unit of force is 1 kilonewton, the length is 1 km and time 100 s, what will be the unit of mass? - a) 1,000 kg b) 10,000 kg | | c) 100 kg | d) 1 kg | | |-----|---|---|--------| | 6. | A sphere rolls down an inclined plane of inclination $ heta.$ What is the acceleration as the sphere reaches bottom? | | [0.77] | | | a) $ rac{2}{5}g\sin heta$ | b) $\frac{5}{7}g\sin\theta$ | | | | c) $ rac{3}{5}g\sin heta$ | d) $\frac{2}{7}g\sin\theta$ | | | 7. | If a solid sphere and solid cylinder of same m
moment of inertia will be greater for | ass and radius rotate about their own axis the | [0.77] | | | a) solid cylinder and solid sphere | b) solid sphere | | | | c) solid cylinder | d) both solid cylinder and solid sphere are equal | | | 8. | A man weighs 60 kg at earth's surface. At what becomes 30 kg? Given radius of earth is 6400 | earth's surface. At what height above the earth' surface weight radius of earth is 6400 km. | | | | a) 2020 km | b) 3000 km | | | | c) None of these | d) 2624 km | | | 9. | At a metro station, a girl walks up a stationary escalator in time t_1 . If she remains [0.77] | | | | | stationary on the escalator, then the escalator take her up in time t_2 . The time taken by her | | | | | to walk up on the moving escalator will be | | | | | a) $\frac{t_1t_2}{(t_2-t_1)}$ | b) $\frac{t_1t_2}{(t_2+t_1)}$ | | | | c) t ₁ -t ₂ | d) $\frac{(t_1+t_2)}{2}$ | | | 10. | An elevator is descending with uniform accel-
marble at the moment the elevator starts to m
marble is 2 m above the floor when it is dropp
elevator. What is the acceleration of the floor | neasure the acceleration of the elevator. The ped. It takes 1.2 s to reach the floor of the | [0.77] | | | a) 8.18 ms ⁻² | b) 6.58 ms ⁻² | | | | c) 7.2 ms ⁻² | d) 6.08 ms ⁻² | | | 11. | A particle of mass 4 kg is acted upon by steady particle in 4 sec is | y force of 4 N. Distance travelled by the | [0.77] | | | a) 4 m | b) 2 m | | | | c) 16 m | d) 8 m | | | 12. | The work done by an applied variable force F displacement, is | = $x + x^3$ from $x = 0$ m to $x = 2$ m, where x is | [0.77] | | | a) 8 J | b) 10 J | | | | c) 6 J | d) 12 J | | | 13. | The centre of mass of a system of particles does not depend on [0.77] | | [0.77] | | | a) relative distance between the particles | b) masses of the particles | | | | c) forces acting on the particles | d) position of the particles | | |-----|--|---|--------| | 14. | Two heavy spheres each of mass 100 kg and horizontal table. What is the gravitational fo joining the centers of the spheres? Is an objet the equilibrium stable or unstable? | | [0.77] | | | a) $_{0,1.9 imes10^{-8}}$ J/kg, unstable | b) $_{0,1.9} imes10^{-8}$ J/kg stable | | | | c) 0, 2.7 $ imes$ 10 ⁻⁸ J/kg, unstable | d) 0, 2.7 $ imes$ 10^{-8} J/kg, stable | | | 15. | Strong Nuclear Force | | [0.77] | | | a) is responsible for holding the nucleus of an atom together | b) is responsible for holding the electrons of an atom together | | | | c) is a long range force | d) is responsible for holding the nucleus of an atom and the electrons | | | 16. | The specific resistivity ρ of a circular wire of radius r, resistance R and length l is given by ρ = $\frac{\pi r^2 R}{l}$. Given, r = (0.24 \pm 0.02) cm, R = (30 \pm 1) Ω and l = (4.80 \pm 0.01)cm. The percentage error in ρ is nearly: | | [0.77] | | | a) none of these | b) 20% | | | | c) 18% | d) 7% | | | 17. | Two parallel rail tracks run north-south. Train A moves north with a speed of 27 km/ hr, and train B moves south with a speed of 45 km/ hr. What is the velocity of B with respect to A in m/s? Choose the positive direction of the x-axis to be from the south to north: | | | | | a) -18 | b) -28 | | | | c) -20 | d) -15 | | | 18. | It is found that $ A + B = A $. This necessarily implies, | | [0.77] | | | a) B = 0 | b) A.B ≤ 0 | | | | c) A, B are perpendicular | d) A, B are antiparallel | | | 19. | A body of mass 5 kg starts from the origin with an initial velocity $\vec{u}=(30\hat{i}+40\hat{j})$ m/s. If a constant force $(-6\hat{i}-5\hat{j})$ N acts on the body, the time in which the y-component of the velocity becomes zero is | | [0.77] | | | a) 20 s | b) 5 s | | | | c) 80 s | d) 40 s | | | 20. | the ceiling and has force constant value k. Th | nd of a vertical spring. The spring is hung from
the mass is released from rest with the spring
on produced in the length of the spring will be | [0.77] | 21. A thin uniform rod of length 2l and mass M is acted upon a constant torque. The angular velocity changes from zero to ω in time t. The value of torque is: b) 4 $\frac{Mg}{k}$ d) $\frac{Mg}{2k}$ a) $\frac{Mg}{k}$ c) 2 $\frac{Mg}{k}$ | | a) $\frac{Ml^2\omega}{12t}$ | b) $\frac{Ml^2\omega}{t}$ | | |-----|--|---|--------| | | c) $\frac{2Ml^2\omega}{3t}$ | b) $\frac{Ml^2\omega}{t}$ d) $\frac{Ml^2\omega}{3t}$ | | | 22. | For a satellite to be in a circular orbit 780 kr | 00 | [0.77] | | | period of the orbit (in hours)? | | | | | a) 1.98 hr | b) 1.65 hr | | | | c) 1.78 hr | d) 1.88 hr | | | 23. | A body moving with uniform acceleration hadirection when its x coordinate is 3.00 cm. It what is the magnitude of its acceleration in | f its x coordinate 2.00 seconds later is -5.00 cm, | [0.77] | | | a) -14.0 | b) -12.0 | | | | c) -16.0 | d) -18.0 | | | 24. | In a two dimensional motion, instantaneous | s speed v_0 is a positive constant. Then which of | [0.77] | | | the following are necessarily true: | | | | | a) The acceleration of the particle is
bounded. | b) The acceleration of the particle is
necessarily in the plane of motion. | | | | c) The acceleration of the particle is zero. | d) The particle must be undergoing a uniform circular motion | | | 25. | A body of mass 0.25 kg is projected with mukg. What is the recoil velocity of the tank? | zzle velocity 100 m/s from a tank of mass 100 | [0.77] | | | a) 0.25 m/s | b) 0.5 m/s | | | | c) 5 m/s | d) 25 m/s | | | | | ection B | | | | - | ny 20 questions | | | 26. | 26. A horizontal platform is rotating with a uniform angular velocity ω around the vertical passing through its centre. At some instant of time, a viscous liquid of mass m is droppe the centre and is allowed to spread out and finally fall. The angular velocity during this period | | [0.77] | | | a) remains unaltered | b) decreases initially and increases again | | | | c) increases continuously | d) decreases continuously | | | 27. | | ectively, are at the opposite ends of a boat. The g. The 55 kg man walks up to the 65 kg man and centre of mass of the system shifts by | [0.77] | | | a) zero | b) 2.3 m | | | | c) 0.75 m | d) 3.0 m | | | 28. | A body of mass m is taken from the earth's so of the earth. The change in potential energy | surface to a height equal to twice the radius (R) of body will be: | [0.77] | CLICK HERE >> | | a) $\frac{1}{3}$ mgR | b) $\frac{2}{3}$ mgR | | |--|--|--|--------| | | c) 3 mgR | d) mg^2R | | | 29. | A force \vec{F} = $2\hat{i}$ + $3\hat{j}$ + \hat{k} acts on a body. The we + \hat{j} - \hat{k} is | ork done by the force for a displacement of -2 \hat{i} | [0.77] | | | a) 2 units | b) -2 units | | | | c) -4 units | d) 4 units | | | 30. | A truck accelerates at 1 m $/ sec^2$ from rest. W | hat is its velocity in m/s at a time of 2 sec? | [0.77] | | | a) 2 | b) 4 | | | | c) 1 | d) 3 | | | 31. A batter hits a baseball so that it leaves the bat at speed v_0 = 37.0 m/s at an angle a = 53 Find the time when the ball reaches the highest point of its flight, and its height h at the time? | | | [0.77] | | | a) 3.02 s, 44.7 m | b) 3.32 s, 41.7 m | | | | c) 3.12 s, 43.7 m | d) 3.22 s, 42.7 m | | | 32. | | | | | | a) 68% | b) 41% | | | | c) 200% | d) 100% | | | 33. | In precession such as that of a top: | | [0.77] | | | a) the axis of rotation oscillates vertically | b) the axis of rotation is fixed | | | | c) the axis of rotation oscillates
horizontally | d) the axis of rotation moves | | | 34. | Joule second is the unit of | | [0.77] | | | a) angular momentum | b) pressure | | | | c) work | d) momentum | | | 35. | Two parallel rail tracks run north-south. Train A moves north with a speed of 54 km/ hr, and train B moves south with a speed of 90 km/ hr. What is the velocity of a monkey running on the roof of the train A against its motion (with a velocity of 18 km/hr with respect to the train A) as observed by a man standing on the ground in m/s? Choose the positive direction of x-axis to be from south to north | | | | | a) 10.0 | b) 3 | | | | c) 8 | d) 11 | | | 36. | A projectile is fired a velocity of 150 meters per
horizontal. What is the magnitude of the vert
projectile is fired? | | [0.77] | CLICK HERE >> | | a) 225 m/s | b) 75 m/s | | |-----|---|---|--------| | | c) 150 m/s | d) 130 m/s | | | 37. | A body of mass 8 kg is moved by a force $F = 3x$ position is $x = 2$ m and the final position is $x = 3$ speed is | | [0.77] | | | a) 14 m/s | b) 18 m/s | | | | c) 6 m/s | d) 12 m/s | | | 38. | Classical Physics deals mainly with | · | [0.77] | | | a) transport phenomena | b) macroscopic phenomena | | | | c) microscopic phenomena | d) surface phenomena | | | 39. | Which of the following is a dimensionless qua | antity? | [0.77] | | | a) Specific heat | b) Strain | | | | c) Stress | d) Quantity of heat | | | 40. | | | [0.77] | | | a) 450 N | b) 300 N | | | | c) 400 N | d) 370 N | | | 41. | Calculate the escape speed from the Earth for a 5000-kg spacecraft. mass of the earth = 6.0 \times 10 ²⁴ kg; radius of the earth = 6.4 \times 10 ⁶ m; G = 6.67 \times 10 ⁻¹¹ N m ² kg ⁻² . | | | | | a) 1.52×10^4 m/s | b) 1.32×10^4 m/s | | | | c) 1.12×10^4 m/s | d) $1.72 \times 10^4 \text{m/s}$ | | | 42. | | | [0.77] | | | a) the torque is zero | b) the torque causes the earth to spin | | | | c) the rigid body result is not applicable
since the earth is not even
approximately a rigid body | d) the torque causes the earth to move around the sun | | | 43. | The asteroid Toro has a radius of about 5.0 km. assuming that the density of Toro is the [0.7] | | | | | same as that of the earth (5.5 g/cm ³) Suppose around Toro, with a radius just slightly larger of the object? Mass of the earth = 6.0×10^{24} $\times 10^{-11}$ Nm ² kg ⁻² . | than the asteroid's radius. What is the speed | | | | = | | | | | a) 6.8 m/s | b) 6.6 m/s | | |-----|--------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------| | | c) 6.4 m/s | d) 6.2 m/s | | | 44. | A 30 g bullet travelling initially at 500 m/s pe | netrates 12 cm into wooden block. The average | [0.77] | | | force exerted will be | | | | | a) 31750 N | b) 3040 N | | | | c) 31250 N | d) 41250 N | | | 45. | Assertion (A): A body falling freely may do s | so with constant velocity. | [0.77] | | | Reason (R): The body falls freely when the a | cceleration of a body is equal to the | | | | acceleration due to gravity. | | | | | a) Both A and R are true and R is the | b) Both A and R are true but R is not the | | | | correct explanation of A. | correct explanation of A. | | | 4.0 | c) A is true but R is false. | d) A is false but R is true. | [0 55] | | 46. | Assertion (A): A stone tied to the end of a structure with a constant speed. If the stone makes | | [0.77] | | | centripetal acceleration produced is π^2 ms ⁻² | | | | | Reason (R): Centripetal acceleration = $\omega^2 R$ | | | | | a) Both A and R are true and R is the | b) Both A and R are true but R is not the | | | | correct explanation of A. | correct explanation of A. | | | | c) A is true but R is false. | d) A is false but R is true. | | | 47. | Assertion (A): The result of every measurem | nent by any measuring instrument contains | [0.77] | | | some uncertainty. Reason (R): This uncertainty in measuremen | nt is accuracy | | | | a) Both A and R are true and R is the | • | | | | correct explanation of A. | correct explanation of A. | | | | c) A is true but R is false. | d) A is false but R is true. | | | 48. | | ame role in rotational motion, as mass plays in | [0.77] | | | linear motion. | r i i i i i i i i i i i i i i i i i i i | | | | Reason (R): Moment of inertia depends only | on the mass of the body. | | | | a) Both A and R are true and R is the | b) Both A and R are true but R is not the | | | | correct explanation of A. | correct explanation of A. | | | | c) A is true but R is false. | d) A is false but R is true. | | | 49. | Assertion (A): A safe turn by a cyclist should | <u>-</u> | [0.77] | | | Reason (R): The bending angle from the vert velocity. | cical would decrease with an increase in | | | | a) Both A and R are true and R is the | b) Both A and R are true but R is not the | | | | correct explanation of A. | correct explanation of A. | | | | c) A is true but R is false. | d) A is false but R is true. | | | | Sec | ction C | | | | | | | CLICK HERE >> ## Attempt any 5 questions - 50. A truck covers 40.0 m in 8.50 s while smoothly slowing down to a final speed of 2.80 m/s. **[0.77]** Find its original speed in m/s. - a) 6.61 b) -0.368 c) -0.3878 - d) 4.756 - 51. If μ_s is coefficient of static friction and μ_k is coefficient of kinetic friction, then - [0.77] a) generally, $\mu_s=\mu_k$ - b) there is no relation between μ_s and - μ_k c) generally $\mu_s < \mu_k$ d) generally $\mu_s > \mu_k$ # Question No. 52 to 55 are based on the given text. Read the text carefully and answer the questions: In everyday life, the term work is used to refer to any form of activity that requires the exertion of mental or muscular efforts. In physics, work is said to be done by a force or against the direction of the force, when the point of application of the force moves towards or against the direction of the force. If no displacement takes place, no work is said to be done. - 52. A box is pushed through 4.0 m across a floor offering 100 N resistance. How much work is **[0.77]** done by the applied force? - a) 100 J b) 300 J c) 400 J - d) 200 J - 53. What is work done in holding a 15 kg suitcase while waiting for 15 minutes? - [0.77] a) 22.5 J b) zero c) 225 J d) 150 J 54. Frictional forces are: [0.77] a) conservative forces b) non-conservative forces c) buoyant force - d) none of these - 55. When the body moves in a circular motion, net 'work' done is: [0.77] a) none of these b) positive c) negative d) zero #### Solution ## SUBJECT - PHYSICS 042 - TEST - 01 ## **Class 11 - Physics** #### **Section A** 1. **(c)** some of the most basic features of atomic phenomena. **Explanation:** When science progressed into the realm of the microscopic (of dimensions the size of an atom) world i.e. less than a nanometer, it was observed that Newtonian mechanics and classical electrodynamics were in contradiction with experiments. 2. **(b)** distance between stars **Explanation:** Light year is the distance traveled by light in one year. 3. **(a)** 20.0 **Explanation:** Initial velocity, u = 100 m/s As it stops so final velocity, v = 0 Acceleration $a = -5 \text{ m/s}^2$ We know, v - u = at $$\Rightarrow t = \frac{v-u}{a}$$ $$\Rightarrow t = \frac{0-100}{-5} = \frac{-100}{-5}$$ $$\Rightarrow t = 20.0 \text{ s}$$ 4. **(c)** 10.2 m/s the velocity components at t = 0.50 s are $$v_{x} = v_{ox} = 9.0 \text{m/s}$$ $$v_v = -gt = -9.8 \times 0.50 = -4.9 \text{m/s}$$ The motorcycle has the same horizontal velocity v_x as when it left the cliff at t = 0, but in addition there is a downward (negative) vertical velocity v_y . The velocity vector at t = 0.50 s is given by, $$ec{v} = v_x \hat{i} + v_y \hat{j} = 9.0 \hat{i} + (-4.9) \hat{j}$$ at t = 0.50 s the velocity has magnitude v is given by, $$ext{v}$$ = $\sqrt{(v_x)^2 + (v_y)^2} = \sqrt{(9.0)^2 + (-4.9)^2}$ Hence, velocity is v = 10.2 m/s 5. **(b)** 10,000 kg **Explanation:** Let x kg be the unit of mass. As $$[F] = [MLT^{-2}]$$ $$\therefore 1000 = [xkg]^{1}[1000m]^{1}[100s]^{-2}$$ or x = 10,000 kg 6. **(b)** $\frac{5}{7}g\sin\theta$ Explanation: $$a= rac{g\sin heta}{1+ rac{I}{MR^2}}$$ For a sphere, $I= rac{2}{5}MR^2$ $\therefore a= rac{5}{7}g\sin heta$ 7. (c) solid cylinder **Explanation:** M.I. of solid sphere = $\frac{2}{5}MR^2$ M.I. of solid cylinder $=\frac{1}{2}MR^2$ Clearly, $I_{ m cylinder} > I_{ m sphere}$ 8. (c) None of these Explanation: $mg' = mg rac{R^2}{(R+h)^2}$ $$\Rightarrow$$ 30 = 60 $\times \frac{(6400)^2}{(6400+h)^2}$ $$\Rightarrow$$ 6400 + h = 6400 $\sqrt{2}$ $$\Rightarrow$$ h = 6400(1.414 - 1) = 2651 km **(b)** $\frac{t_1t_2}{(t_2+t_1)}$ **Explanation:** Let L be the length of the escalator. Velocity of girl w.r.t. ground $v_g = \frac{L}{t_1}$ Velocity of escalator w.r.t. ground $v_e = \frac{L}{t_2}$ Effective Velocity of girl on moving escalator with respect to ground = $v_g + v_e = \frac{L}{t_1} + \frac{L}{t_2} = L \left| \frac{1}{t_1} + \frac{1}{t_2} \right|$ $${ m v_{ge}}$$ = $L\left[rac{t_1+t_2}{t_1t_2} ight]$ Time t taken by girl on moving escalator in going up the distance Lis $$t = \frac{dis \tan ce}{speed} = \frac{L}{L\left(\frac{t_1+t_2}{t_1t_2}\right)} = \frac{t_1t_2}{t_1+t_2}$$ 10. (c) 7.2 ms^{-2} > **Explanation:** Let the acceleration of the elevator be 'a' downwards. As the elevator is going downwards the marble has to travel a distance more than 2 m in order to strike the floor. Initial velocity, u = 0 for both the marble and the elevator. Distance travelled by elevator in 1.2 s = $\frac{1}{2}a \times (1.2)^2$ Distance travelled by marble in 1.2 s = $\frac{1}{2}g imes (1.2)^2 = \frac{1}{2} imes 10 imes (1.2)^2$ This distance should be equal to height of marble + distance covered by elevator. So, $$rac{1}{2} imes 10 imes (1.2)^2$$ = $2+ rac{1}{2} imes a imes (1.2)^2$ On solving, we get, $a = 7.2 \text{ ms}^{-2} \text{ downwards}$. 11. (d) 8 m **Explanation:** $$a= rac{F}{m}= rac{4}{4}$$ = 1 ms $^{ ext{-}2}$ $s=ut+ rac{1}{2}at^2=0+ rac{1}{2} imes1 imes4^2$ = 8 m 12. **Explanation:** W = $$\int F dx = \int_{0}^{2} (x + x^{3}) dx = \left[\frac{x^{2}}{2} + \frac{x^{4}}{4}\right]_{0}^{2}$$ = 6 J 13. (c) forces acting on the particles > Explanation: The centre of mass of a system of particles does not depend on the forces acting on the particles. (c) $0, 2.7 \times 10^{-8}$ J/kg, unstable 14. **Explanation:** Here, G = $6.67 \times 10^{-11} \text{N m}^2 \text{ kg}^{-2}$ $$M = 100 \text{ kg}$$ $$R = 0.1 \text{ m}$$ Distance between the two spheres d = 1.0 m Suppose that the distance of either sphere from the midpoint of the line joining their centre is r. Then $r = \frac{d}{2} = 0.5 \text{ m}$ The gravitational field at the midpoint due to two spheres will be equal and opposite. Hence, the resultant gravitational field at the midpoint = 0 The gravitational potential at the midpoint. $$= \left(\frac{-GM}{r}\right) \times 2$$ $$= -\frac{6.67 \times 10^{-11} \times 100 \times 2}{0.5}$$ $$= -2.7 \times 10^{-8} \text{ Jkg}^{-1}$$ As the effective force on the body placed at the midpoint is zero, so the body is in equilibrium, if the body is displaced a little towards either mass body from its equilibrium position, it will not return to its initial position of equilibrium. Hence, the body is in unstable equilibrium. 15. **(a)** is responsible for holding the nucleus of an atom together **Explanation:** The strong nuclear force is the nuclear binding force, the force that provides the attraction.it might also be responsible for holding particles together within the nucleus of atoms. 16. **(b)** 20% **Explanation:** $$\frac{\Delta \rho}{\rho} \times 100 = \frac{2\Delta r}{r} \times 100 + \frac{\Delta R}{R} \times 100 + \frac{\Delta l}{l} \times 100$$ = $2 \times \frac{0.02}{0.24} \times 100 + \frac{1}{30} \times 100 + \frac{0.01}{4.80} \times 100$ = $16.7 + 3.3 + 0.2 = 20.2\% \simeq 20\%$ 17. **(c)** -20 **Explanation:** The velocity of A is given by, $v_A = +27 \text{ kmh}^{-1} = +7.5 \text{ ms}^{-1}$ The velocity of B is given by , $v_B = -45 \text{ kmh}^{-1} = -12.5 \text{ ms}^{-1}$ The relative velocity of B with respect to A is given by, $v_{BA} = v_B - v_A = -7.5 - 12.5 = -20 \text{ ms}^{-1}$ i.e. the train B appears to A to move with a speed of 20 ms⁻¹ from north to south. 18. **(a)** B = 0 **Explanation:** We have to identity statements which are always true. It is given that $|\vec{A} + \vec{B}| = |\vec{A}|$, it could be true in two conditions that is either \vec{B} = 0 or \vec{B} = -2 \vec{A} . For forming a single condition we will multiply them, as either one of them is true it will uphold the necessary condition We know $ec{B}=0, ec{B}-2ec{A}$ = 0 (from previous equations) Therefore their magnitude's product will also be zero. $$|ec{B}|(|ec{B}|-2|ec{A}|)=0$$ (This will always be true) $|ec{B}|^2-2|ec{A}||ec{B}|$ = 0 Therefore, $$|A||B| \leq 0$$ (Equality is true for B = 0) Above condition is always true 19. **(d)** 40 s Explanation: $$\vec{u} = (30\hat{i} + 40\hat{j})$$ m/s ∴ $u_y = 40$ m/s $\vec{F} = (-6\hat{i} - 5\hat{j})$ N ∴ $F_y = -5$ N $a_y = \frac{F_y}{m} = \frac{-5}{5} = -1$ m/s² $v_y = 0$ But $$v_v = u_v + a_v t$$ $$\therefore 0 = 40 - 1 \times \text{ or } t = 40 \text{ s}$$ 20. **(c)** $2 \frac{Mg}{k}$ Explanation: Loss of gravitational P.E. = Gain of spring P.E. $$Mg x = \frac{1}{2} kx^{2}$$ $$\therefore x = \frac{2Mg}{k}$$ 21. **(d)** $$\frac{Ml^2\omega}{3t}$$ **Explanation:** As Torque(τ) is equal to the product of Moment of Inertia (I) and Angular acceleration (α) $$egin{aligned} au &= Ilpha \ au &= I rac{\Delta\omega}{\Delta t} \ au &= \left[rac{M(2l)^2}{12} ight]\left[rac{\omega}{t} ight] \ au &= rac{Ml^2\omega}{3t} \end{aligned}$$ 22. **(b)** 1.65 hr **Explanation:** Mass of the Earth, $M_e = 6.0 \times 10^{24} \, kg$ The radius of the Earth, Re = $6.4 \times 10^6 m$ Universal gravitational constant, G = $6.67 \times 10^{-11} \text{Nm}^2 \text{ kg}^{-2}$ Height of the satellite, h = 780 km = 780×10^3 m = 0.78×10^6 m Time Period of the satellite, T = $2\pi\sqrt{ rac{(R_e+h)^3}{GM_e}}$ $$= 2 \times \frac{22}{7} \times \sqrt{\frac{(6.4 \times 10^6 + 0.78 \times 10^6)^3}{6.67 \times 10^{-11} \times 6.0 \times 10^{24}}}$$ $$= 2 \times \frac{22}{7} \times \sqrt{\frac{(7.18 \times 10^6)^3}{40 \times 10^{13}}}$$ $$= 2 \times \frac{22}{7} \times \sqrt{9 \times 10^5}$$ $$= 2 \times \frac{22}{7} \times 948$$ $$= 2 \times 22 \times 135.42$$ $$= 5958.85 \sec = 1.65 \text{ hr}$$ 23. **(c)** -16.0 **Explanation:** Distance covered s = Final position - initial position = -5 - 3 = -8 cm Initial velocity u = 12.0 cm/s Time taken t = 2.0 s We know $$s = ut + \frac{1}{2}at^2$$ $\Rightarrow -8 = 2 \times 12.0 + \frac{1}{2}a \times 4$ $\Rightarrow -8 = 24 + 2a$ $\Rightarrow a = \frac{-8-24}{2} = -16.0 \text{ cm/s}^2 \text{ hence this is required result}$ 24. **(b)** The acceleration of the particle is necessarily in the plane of motion. **Explanation:** We know that change in acceleration and velocity is in the direction of Force (F) by \vec{F} = m $ec{a}$ and change in velocity is zero so acceleration will also be zero and will be in the same planes as that of velocity. 25. (a) 0.25 m/s **Explanation:** By conservation of momentum, $$100 \times v = 0.25 \times 100$$ v = 0.25 m/s **Section B** (b) decreases initially and increases again 26. **Explanation:** By conservation of angular momentum, $L = I\omega = constant$ As the liquid is dropped, it starts spreading out. The moment of inertia increases and angular velocity decreases. As the liquid starts falling, the moment of inertia again decreases and angular velocity increases. 27. **(a)** zero #### **Explanation:** As there is no external force, the centre of mass of the system does not shift. 28. **(b)** $\frac{2}{3}$ mgR Explanation: Cgange in potential energy, $$\Delta U = -\left(\frac{GMm}{R+2R}\right) - \left(-\frac{GMm}{R}\right)$$ $$= -\frac{GMm}{3R} + \frac{GMm}{R}$$ $$= \frac{2GMm}{3R} \left[\because g = \frac{GM}{R^2}\right]$$ $$= \frac{2}{3} mgR$$ 29. **(a)** 2 units **Explanation:** $$\vec{F} = 2\hat{i} + 3\hat{j} + \hat{k}$$ $\vec{s} = -2\hat{i} + \hat{j} - \hat{k}$ W = $\vec{F} \cdot \vec{s} = -4 + 3 - 1 = -2$ units 30. **(a)** 2 **Explanation:** Initial velocity, u = 0 m/s Time $$t = 2 s$$ Acceleration, $$a = 1 \text{ m/s}^2$$ We know, $$v = u + at$$ $$\Rightarrow v = 0 + 1 \times 2$$ $$\Rightarrow$$ v = 2 m/s 31. **(a)** 3.02 s, 44.7 m The initial velocity of the ball has components $$m v_{ox}$$ = $m v_{o}$ cos $m lpha_{o}$ = 37.0 $imes$ cos53.1 o $$= 22.2 \text{ m/s}$$ $$v_{ov} = v_o \sin \alpha_o = 37.0 \times \sin 53.1^o$$ $$= 29.6 \text{ m/s}$$ At the highest point, the vertical velocity v_v is zero. Call the time when this happens t_1 ; then $$v_y = v_{oy} - gt_1 = 0$$ $\Rightarrow t_1 = \frac{v_{oy}}{g} = \frac{29.6}{9.8} = 3.02 \text{ s}$ The height at the highest point is the value of y at time t₁: $$h=v_{oy}t_1- rac{1}{2}g(t_1)^2$$ = $$29.6 \times 3.02 - \frac{1}{2} \times 9.8 \times (3.02)^2$$ = 44.7 m **(b)** 41% 32. Explanation: p = mv = $$m\sqrt{2gh}$$ $p'=m\sqrt{2g\times 2h}=\sqrt{2}p$ = 1.414 p % change = $\frac{p-p}{p}=\frac{1.414p-p}{p} imes100$ = 41.4% 33. (d) the axis of rotation moves > **Explanation:** Precession is a change in the orientation of the rotational axis of a rotating body, so the orientation of the axis of rotation of Top change. 34. (a) angular momentum > **Explanation:** [Angular momentum] = [Work] [Time] ... Is is the unit of angular momentum. 35. (a) 10.0 **Explanation:** Choose the positive direction of the x-axis to be from the south to the north. Then, $$v_A = +54 \text{ km h}^{-1} = +15 \text{ ms}^{-1}$$ $$v_B = -90 \text{ km h}^{-1} = -25 \text{ ms}^{-1}$$ The relative velocity of B with respect to A = v_B - v_A = (-25) -15= -40 ms⁻¹, i.e. the train B appears to A to move with a speed of 40 ms⁻¹ from north to The relative velocity of ground with respect to B = $0 - v_B = 0 - (-25) = 25 \text{ms}^{-1}$ Now, let the velocity of the monkey with respect to the ground be v_{M} . The relative velocity of the monkey with respect to A, $$v_{MA} = v_{M} - v_{A} = 18 - 54 \text{ kmh}^{-1} = -10 \text{ms}^{-1}$$. 36. **(b)** 75 m/s **Explanation:** Initial velocity, u = 150 m/s Angle $$heta=30^\circ$$ Vertical component is given by $$v_y = usin heta = 150sin30^\circ = 150 imes rac{1}{2}$$ = 75 m/s 37. (c) 6 m/s **Explanation:** F = ma $$= m rac{dv}{dt} = m rac{dv}{dx} \cdot rac{dx}{dt}$$ Fdx = mv dv $$\left[rac{dx}{dt} = v ight]$$ $$3x dx = 8v dv$$ $$3\int_2^{10}xdx=8\int_0^vvdv$$ $$\frac{3}{2} [x^2]_2^{10} = \frac{8}{2} [v^2]_0^v$$ $$\frac{3}{2}[100-4] = 4[v^2-0]$$ or $$\frac{3}{2} imes \frac{96}{4} = v^2$$ or v = 6 m/s. 38. (b) macroscopic phenomena > Explanation: Classical physics is the study of motion, projectiles, pulleys, and the planets. It mainly deals with the movement of large objects (macroscopic) through space at relatively low slow speeds. 39. (b) Strain **Explanation:** Strain is a dimensionless quantity. 40. (c) 400 N **Explanation:** Let, T= tension on the string a = acceleration, Given that, m_1 = mass of light body is = 10 kg and m_2 = mass of heavy body is = 20 kg $$a = rac{F}{m_1 + m_2} = rac{600}{30}$$ = 20ms⁻² Now the tension in the string will be, $$T = m_2 a = 20 \times 20 = 400 N$$ 41. **(c)** $$1.12 \times 10^4$$ m/s **Explanation:** We know, $$V_{esc} = \sqrt{\frac{2GM}{R}}$$ Here G = $$6.67 \times 10^{-11} \text{Nm}^2 \text{kg}^{-2}$$ $$M = 6 \times 10^{24} \, \text{kg}$$ $$R = 6.4 \times 10^6 \, \text{m}$$ $$egin{aligned} \Rightarrow V_{esc} &= \sqrt{ rac{2GM}{R}} \ &= \sqrt{ rac{2 imes 6.67 imes 10^{-11} imes 6 imes 10^{24}}{6.4 imes 10^6}} \ &= \sqrt{ rac{12 imes 6.67 imes 10^7}{6.4}} \end{aligned}$$ $$=\sqrt{\frac{6.4\times10^{7}}{6.4}}$$ = $$1.12 \times 10^4$$ m/sec #### 42. (a) the torque is zero **Explanation:** As the earth is revolving around the sun in a circular motion (approximately in actual the path of the earth around the sun is elliptical) due to gravitational attraction. When we consider the earthsun as a single system and we are taking earth as a sphere of uniform density. Then the gravitational force (F) will be of radial nature, i.e. the angle between position vector r and force F is zero. So, torque $$|ec{r}|=|ec{r} imesec{F}|=rF\sin0^\circ$$ = 0 #### (d) 6.2 m/s 43. **Explanation:** We know Orbital velocity: $$V_{\text{orbital}} = \sqrt{\frac{GM_{toro}}{r}}$$(1) We can calculate the mass of Toro by mass density relationship: Mass = Volume × Density $$\Rightarrow M_{ m toro} = rac{4}{3}\pi R_{ m toro}^3 imes ho_{ m toro}$$ Here $$R_{toro} = 5.0 \text{ km} = 5000 \text{ m}$$ $$ho_{ m toro}=5.5{ m g/cm^3}=55 imes10^2{ m kg/m^3}$$ $$\Rightarrow$$ M_{toro} = $(4/3)\pi(5000)^3 \times 55 \times 10^2$ $$\Rightarrow$$ M_{toro} = (4/3) × (22/7) × 125 × 10⁹ × 55 × 10² \Rightarrow M_{toro} = 2.9 × 10¹⁵kg Putting Value Of M $_{toro}$,G = 6.67 \times 10 $^{-11}$ and r \approx R $_{toro}$ = 5000 in Eqn (1) $$V_{orbital} = \sqrt{ rac{6.67 imes 10^{-11} imes 2.9 imes 10^{15}}{5000}}$$ $$\Rightarrow V_{ m orbital} = \sqrt{ rac{19.34 imes10^4}{5 imes10^3}}$$ $$ightarrow V_{ m orbital} = \sqrt{3.886 imes 10}$$ $$\Rightarrow V_{ m orbital} = \sqrt{38.86}$$ = 6.2m/sec #### 44. (c) 31250 N **Explanation:** $v^2 - u^2 = 2a$ $$a=- rac{500)^2}{2 imes0.12}=2a imes0.12$$ $a=- rac{500 imes500}{2 imes0.12}$ $$a = -\frac{500 \times 500}{2 \times 0.12}$$ Average force = ma = $$\frac{30}{1000} \times \frac{500 \times 500}{2 \times 0.12}$$ = 31250 #### (d) A is false but R is true. 45. **Explanation:** When a body is falling freely, only a gravitational force acts on it in a vertically downward direction. Due to this downward acceleration, the velocity of a body increases and will be maximum when the body touches the ground. If downward accelerating force is balanced by the upward retarding force, the body falls with constant velocity. This constant velocity is called the terminal velocity of the body. 46. **(a)** Both A and R are true and R is the correct explanation of A. **Explanation:** R = 1 m, f = $$\frac{22}{44}$$ = 0.5 Hz, ω = 2 π f = $$2\pi imes 0.5 = \pi$$ radian Centripetal acceleration = $\omega^2 R$ = $\pi^2 ms^{-2}$ So, the assertion and reason both are true and the reason explains the assertion. 47. **(c)** A is true but R is false. **Explanation:** The result of every measurement by any measuring instrument contains some uncertainty. This is known as an error. So, the A is true but R is false. 48. **(c)** A is true but R is false. **Explanation:** The mass or inertia is the property of bodies by virtue of which the bodies have a tendency to remain at rest or in a state of uniform linear motion unless an external force is exerted on them. Greater is the mass of the body, greater is the external force required to brings it in the position of rest or uniform motion. Similarly, in order to rotate a body about an axis, a torque has to be applied to the body. This is described by saying that the body has a moment of inertia about the axis of rotation. The greater is the moment of inertia of a body about an axis, the greater is the torque required to rotate or to stop the body about that axis. Thus, the moment of inertia plays the same role in the rotational motion as mass or inertia plays in translational motion. 49. **(c)** A is true but R is false. **Explanation:** During a turn $\tan \theta = \frac{v^2}{rg}$, where θ is angle of bending with vertical, when v is large and r is small, $\tan \theta$ increases. Therefore, as θ increases, so chances of skidding increase. Thus for a safe turn, θ should be small, for which v should be small and r should be large i.e. turning should be at a slow speed and along a track of larger radius. #### **Section C** 50. **(a)** 6.61 **Explanation:** We know that, for a particle moves in a straight line with a constant acceleration a_x , its motion is described by the kinematic equation given by: $$\Delta x = rac{1}{2}(v_{xi} + v_{xf})\Delta t$$ Rearranging it, we have $$v_i = rac{2\Delta x}{\Delta t} - v_f$$ Substituting the values of $\Delta x, \Delta t$ and v_f into this equation, we get $$v_i = rac{2(40.0 \mathrm{m})}{8.50 \mathrm{s}} - (2.80 \mathrm{m/s}) = 6.61 \mathrm{m/s}$$ 51. **(d)** generally $\mu_s > \mu_k$ **Explanation:** generally $\mu_s > \mu_k$ 52. **(c)** 400 J Explanation: 400 J 53. **(b)** zero **Explanation:** zero 54. **(b)** non-conservative forces **Explanation:** non-conservative forces 55. **(d)** zero Explanation: zero